1,3-Digermabicyclo[1.1.0]butane with an Inverted Bridge Ge–Ge σ Bond

Takeaki Iwamoto,*¹ Dongzhu Yin,² Sven Boomgaarden,² Chizuko Kabuto,¹ and Mitsuo Kira*²

¹Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578 ²Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578

(Received February 18, 2008; CL-080181; E-mail: iwamoto@mail.tains.tohoku.ac.jp, mkira@mail.tains.tohoku.ac.jp)

1,3-Digermabicyclo[1.1.0]butane 2 was synthesized as yellow crystals. The molecular structure, 13 C NMR and UV– vis spectra, and theoretical calculations have revealed that 2 is a typical long bond isomer, similarly to the silicon congener 1. Structural comparison between 1 and 2 is achieved.

Metallabicyclo[1.1.0]butanes of heavier group-14 elements have received much attention because of their unique structural characteristics.¹ Theoretical studies have shown that there are two isomers in the metallabicyclobutanes, short-bond (SB) and long-bond (LB) isomers, which differ primarily in the distance between the bridgehead atoms. The LB isomer is expected to have an inverted σ bond resulting from an overlap between back lobes of pertinent hybridized orbitals on the bridgehead atoms, while the SB isomer a typical bent σ bond, as shown in Chart 1.²

Chart 1.

Recently, we have synthesized 1,3-disilabicyclobutane 1 as the first LB isomer of the metallabicyclobutane having bridgehead heavier group-14 elements.³ In the present paper, we wish to report the successful synthesis and molecular structure of the first 1,3-digermabicyclo[1.1.0]butane 2 with the LB structure. Although a number of related germanium-containing bicyclobutane derivatives have been reported,^{4,5} 2 constitutes the first LB isomer among them.

Digermabicyclobutane 2 was synthesized by using a formal double germa-Peterson reaction⁶ of 1,1,2,2-tetrakis(t-butyldimethylsilyl)-1,2-dilithiodigermane (3) (265 mg, 0.252 mmol) and 2-adamantanone (76 mg, 0.51 mmol) in dry benzene (10 mL) at room temperature, similarly to the synthesis of 1 (eq 1).³ Recrystallization from diethyl ether gave analytically pure 2 (236 mg, 0.366 mmol) as air-sensitive but thermally stable orange crystals (mp $203.7-205.5$ °C) in 73% yield.⁷ The structure of 2 was determined by NMR and MS spectroscopy and X-ray crystallography.

$$
\begin{array}{ccc}\nR & R \\
R & \downarrow \\
R-Ge-Ge-R & \xrightarrow{\text{benzene}} 2,73\% \\
\downarrow \downarrow \downarrow & & \xrightarrow{\text{ROLi}} \\
3 & (R = t-BuMe2Si)\n\end{array}
$$
\n(1)

Molecular structure of 2^9 is shown in Figure 1 and selected structural parameters are summarized in Table 1. The bridge Ge1–Ge2 bond distance r [2.5827(3) \AA] is much longer than

Figure 1. ORTEP drawings of 2. Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. (a) Top view. (b) Side view. A part of carbons in adamantylidene and t-butyldimethylsilyl moieties are omitted for clarity.

Table 1. Comparison of selected structural parameters and chemical shift of 2 with those of related compounds^a

^aTheoretical calculations of the model compounds were carried out at the B3LYP/6-311+G(d,p) level. b The sum of bond angles around bridgehead atoms except for the angles containing the bridge bond. ^cChemical shift of the bridge carbon nuclei. The values for the model compounds were calculated at the GIAO/B3LYP/ 6-311G(2df,p)//B3LYP/6-311+G(d,p) level. ^dCalculated relative energy in kcal-mol⁻¹ with a zero-point energy. e Ref 3.

the Ge–Ge bonds of a known digermirane $H_2C[Ge(2,6 Et_2C_6H_3$ ₂ 2 (4) $[2.379(1)$ \AA ¹⁰ and Me₃Ge–GePh₃ $[2.419(1)$ $Å$ ¹¹ Bridgehead germanium atoms in 2 have an inverted-tetrahedral configuration as shown in Figure 1b. The bridgehead germanium atoms in 2 are much more pyramidalized than the bridgehead silicon atoms in 1. The sums of three bond angles around Ge atoms $(\Sigma \varphi)$, except for the angles containing bridge bond, are $332.83(7)^\circ$ for Ge1 and $333.88(6)^\circ$ for Ge2, while that for 1 was $338.30(7)^\circ$.³ The Ge1–Ge2–Si2 and Si1–Ge1–

Figure 2. Frontier Kohn–Sham orbitals for LB-6' at the B3LYP/6-311++G(d,p)//B3LYP/6-311+G(d,p) level. (a) HOMO. (b) LUMO.

Ge2 angles (α) are 115.28(2) and 115.89(2)°, respectively. The four-membered ring of 2 is folded with an interflap angle β between two Ge₂C ring planes of 142.26(9)°. Four atoms, Si1, Ge1, Ge2, and Si2, in 2 are arranged to be almost planar with the dihedral angle Si1-Ge1-Ge2-Si2 of 2.99(3)°. These structural characteristics of 2 in the solid state are quite similar to those of 1, suggesting 2 is an LB isomer.

To disclose the structural details of 2, we carried out DFT calculations for four model compounds, parent 1,3-digermabicyclobutane (6), 1,3-disilyl-2,2,4,4-tetramethyl-1,3-digermabicyclobutane (6'), and their silicon congeners 5 and 5^{\prime} at the B3LYP/6-311+G(d,p) level (Chart 2).¹² The results are summarized in Table 1.

Similarly to the parent 1,3-disilabicyclobutane 5, 1,3-digermabicyclobutane 6 was found to show two local minima with the structural characteristics of LB (LB-6) and SB (SB-6) isomers. The energetic preference of LB-6 over SB-6 is much larger than that of LB-5 over SB-5. LB-6 is $33.0 \text{ kcal} \cdot \text{mol}^{-1}$ more stable than SB-6, while LB-5 is $20.6 \text{ kcal} \cdot \text{mol}^{-1}$ more stable than SB-5.¹³ For $6'$, only a long bond isomer (LB- $6'$) having structural parameters similar to LB-6 was found at the same level. The structural parameters of 2 are in good accord with those of $LB-6'$.

The frontier orbitals of $LB-6'$ are characterized by the highlying HOMO $[\sigma(Ge-Ge)]$ and low-lying LUMO $[\sigma^*(Ge-Ge)]$ resulting from an overlap between the back lobes on the bridgehead germanium atoms as shown in Figure 2. Both the σ and σ^* orbital levels of LB-6' (-5.65 and -2.57 eV) are slightly lower in energy than those of $LB-5'$ (-5.56 and -2.41 eV) and the $\sigma-\sigma^*$ energy gap of LB-6' (3.08 eV) is slightly smaller than that of $LB-5'$ (3.15 eV).

Similarly to 1, 2 shows a clear absorption band at a visible region; λ_{max}/n m (ε) in *n*-hexane, 440 nm (9800).¹⁴ The band assignable to the σ (Ge–Ge) $\rightarrow \sigma^*$ (Ge–Ge) transition is slightly red-shifted and more intense than the $\sigma(Si-Si) \rightarrow \sigma^*(Si-Si)$ transition band in 1 [420 nm (6500)].¹⁷

The ¹³C chemical shift of the ring carbon in 2 (δ _C +135.4) is close to that in LB-6' (δ _C +151.7) being consistent with the LB structure of 2 in solution.¹⁸

In summary, 1,3-digermabicyclo[1.1.0]butane 2 is a long bond isomer similarly to the silicon congener 1. The HOMO–LUMO gap of 2 is slightly smaller than that of 1.

This work was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan [Encouragement of Young Scientists (B) no. 18750025 (T. I.); Specially Promoted Research no. 17002005 (M. K. and T. I.)].

References and Notes

- 1 T. Tsumuraya, S. A. Batcheller, S. Masamune, Angew. Chem., Int. Ed. Engl. 1991, 30, 902; M. Driess, H. Grützmacher, Angew. Chem., Int. Ed. Engl. 1996, 35, 828; A. Sekiguchi, S. Nagase, in The Chemistry of Organic Silicon Compounds, ed. by Z. Rappoport, Y. Apeloig, John Wiley & Sons, New York, 1998, Vol. 2, Chap. 3.
- 2 G. Parkin, Chem. Rev. 1993, 93, 887; H. Grützmacher, F. Breher, Angew. Chem., Int. Ed. 2002, 41, 4006; F. Breher, Coord. Chem. Rev. 2007, 251, 1007; For theoretical studies on germabicyclobutanes, see: S. Nagase, M. Nakano, J. Chem. Soc., Chem. Commun. 1988, 1077; R. Koch, T. Bruhn, M. Weidenbruch, J. Mol. Struct. (THEOCHEM) 2005, 714, 109.
- 3 T. Iwamoto, D. Yin, C. Kabuto, M. Kira, J. Am. Chem. Soc. 2001, 123, 12730.
- 4 V. Y. Lee, M. Ichinohe, A. Sekiguchi, J. Am. Chem. Soc. 2002, 124, 9962.
- 5 For compounds with an inverted-tetrahedral configuration, see: A. F. Richards, M. Brynda, M. M. Olmstead, P. P. Power, Organometallics 2004, 23, 2841; A. F. Richards, M. Brynda, P. P. Power, Organometallics 2004, 23, 4009.
- 6 D. Bravo-Zhivotovskii, I. Zharov, M. Kapon, Y. Apeloig, J. Chem. Soc., Chem. Commun. 1995, 1625.
- 7 2: yellow-orange crystals; mp 203.7–205.5 °C; ¹HNMR (C₆D₆, δ) 0.44 (s, 12H, SiCH3), 1.30 (s, 18H, t-Bu), 1.72–2.46 (m, 28H, adamantylidene); ¹³C NMR (C₆D₆, δ) –0.2 (CH₃), 20.3 (C(CH₃)₃), 28.1 (C(CH3)3), 29.5, 39.8, 42.5, 43.5, 44.7, 45.4, 135.4 (ring carbon); ²⁹Si NMR (C₆D₆, δ) 11.1; UV–vis (*n*-hexane) $\lambda_{\text{max}}/\text{nm}$ $(\mathcal{E}/10^3)$ 325 (4.0) 440 (9.8); MS (EI, 70 eV) m/z (%) 646 (76, M^+), 589 (51), 531 (16), 474 (6), 73 (100); HRMS m/z calcd for $C_{32}H_{58}Ge_2Si_2$, 646.2501; found, 646.2503. For experimental details including synthesis of 3, see Supporting Information.⁸
- 8 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/index.html.
- 9 Single crystals of $2.0.5(C_6H_6)$ suitable for X-ray analysis was obtained by recrystallization from a mixed solvent (hexane: benzene = 1:1). Crystallographic data for $2.0.5(C_6H_6)$ have been deposited with Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 680574.
- 10 T. Tsumuraya, S. Sato, W. Ando, Organometallics 1990, 9, 2061.
- 11 L. Párkányi, A. Kalman, S. Sharma, D. M. Nolen, K. H. Pannel, Inorg. Chem. 1994, 33, 180.
- 12 Details for the DFT calculations, see Supporting Information.⁸
- 13 The greater relative stability of LB isomer to SB isomer of parent bicyclo[1.1.0]tetragermane than parent bicyclotetrasilane has been predicted theoretically by Nagase et al.²
- 14 The absorption maximum of 2 is far red-shifted compared to those of Me₃GeGeMe₃ [λ_{max} 193.7 nm (ϵ 16000)],¹⁵ (*t*-BuMe₂-SiMe₂Ge)₂ (229 nm)¹⁶ and digermirane 4 (300 nm (\mathcal{E} 17400)).¹⁰
- 15 M. Okano, K. Mochida, Chem. Lett. 1990, 701.
- 16 H. K. Sharma, F. Cervantes-Lee, L. Párkányi, K. H. Pannel, Organometallics 1996, 15, 429.
- 17 TD-DFT calculations for $LB-5'$ and $LB-6'$ at the $B3LYP/$ $6-311++G(d,p)$ level confirmed the assignment, while the relative oscillator strengths (f) of the transition bands between 1 and 2 were not reproduced by the calculations. The theoretical absorption bands with the lowest excitation energy are: $\lambda_{\text{max}} =$ 395 nm, $f = 0.204$ for LB-5' and $\lambda_{\text{max}} = 409$ nm, $f = 0.188$ and $LB-6'$.
- 18 Remarkable difference of the ¹³C NMR chemical shift between SB and LB isomers provides a good index to distinguish the isomers.³