1,3-Digermabicyclo[1.1.0] butane with an Inverted Bridge Ge–Ge σ Bond

Takeaki Iwamoto,*1 Dongzhu Yin,2 Sven Boomgaarden,2 Chizuko Kabuto,1 and Mitsuo Kira*2

¹Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578 ²Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578

(Received February 18, 2008; CL-080181; E-mail: iwamoto@mail.tains.tohoku.ac.jp, mkira@mail.tains.tohoku.ac.jp)

1,3-Digermabicyclo[1.1.0]butane **2** was synthesized as yellow crystals. The molecular structure, ${}^{13}CNMR$ and UV-vis spectra, and theoretical calculations have revealed that **2** is a typical long bond isomer, similarly to the silicon congener **1**. Structural comparison between **1** and **2** is achieved.

Metallabicyclo[1.1.0]butanes of heavier group-14 elements have received much attention because of their unique structural characteristics.¹ Theoretical studies have shown that there are two isomers in the metallabicyclobutanes, short-bond (SB) and long-bond (LB) isomers, which differ primarily in the distance between the bridgehead atoms. The LB isomer is expected to have an inverted σ bond resulting from an overlap between back lobes of pertinent hybridized orbitals on the bridgehead atoms, while the SB isomer a typical bent σ bond, as shown in Chart 1.²

Chart 1.

Recently, we have synthesized 1,3-disilabicyclobutane 1 as the first LB isomer of the metallabicyclobutane having bridgehead heavier group-14 elements.³ In the present paper, we wish to report the successful synthesis and molecular structure of the first 1,3-digermabicyclo[1.1.0]butane 2 with the LB structure. Although a number of related germanium-containing bicyclobutane derivatives have been reported,^{4,5} 2 constitutes the first LB isomer among them.

Digermabicyclobutane **2** was synthesized by using a formal double germa-Peterson reaction⁶ of 1,1,2,2-tetrakis(*t*-butyldimethylsilyl)-1,2-dilithiodigermane (**3**) (265 mg, 0.252 mmol) and 2-adamantanone (76 mg, 0.51 mmol) in dry benzene (10 mL) at room temperature, similarly to the synthesis of **1** (eq 1).³ Recrystallization from diethyl ether gave analytically pure **2** (236 mg, 0.366 mmol) as air-sensitive but thermally stable orange crystals (mp 203.7–205.5 °C) in 73% yield.⁷ The structure of **2** was determined by NMR and MS spectroscopy and X-ray crystallography.

$$\begin{array}{c|c} R & R \\ | & | \\ R-Ge-Ge-R \\ | & | \\ Li \\ 3 \end{array} \xrightarrow{benzene \\ -ROLi \\ (R = t \cdot BuMe_2Si)} 2,73\%$$
(1)

Molecular structure of 2^9 is shown in Figure 1 and selected structural parameters are summarized in Table 1. The bridge Ge1–Ge2 bond distance r [2.5827(3)Å] is much longer than

Figure 1. ORTEP drawings of 2. Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. (a) Top view. (b) Side view. A part of carbons in adamantylidene and *t*-butyldimethylsilyl moieties are omitted for clarity.

Table 1. Comparison of selected structural parameters and chemical shift of **2** with those of related compounds^a

R'	α	R'
Ň		M
- /-	\sim	
R_2C	β	UR ₂

$lpha/^\circ$	$\beta/^{\circ}$	S co /ob	6 6	
	r /	$\Sigma \varphi / 2$	0Cc	$\Delta E^{\rm u}$
115.28(2)	142.26(9)	332.83(7)	+135.4	_
115.89(2)		333.88(6)		
118.76(2)	141.1(1)	338.30(7)	+98.3	
165.33	117.28	351.4	+11.4	+20.6
92.60	137.59	306.31	+73.4	0.0
152.14	126.74	359.55	+50.8	+11.8
106.93	141.48	324.82	+105.6	0.0
107.67	117.03	349.97	+24.7	+33.5
90.02	137.52	301.83	+111.7	0.0
103.72	142.68	335.69	+151.7	—
	115.28(2) 115.89(2) 118.76(2) 165.33 92.60 152.14 106.93 107.67 90.02 103.72	$\begin{array}{c cccc} \mu & \mu \\ \hline \mu \\ \hline 115.28(2) & 142.26(9) \\ \hline 115.89(2) \\ \hline 118.76(2) & 141.1(1) \\ \hline 165.33 & 117.28 \\ 92.60 & 137.59 \\ \hline 152.14 & 126.74 \\ \hline 106.93 & 141.48 \\ \hline 107.67 & 117.03 \\ 90.02 & 137.52 \\ \hline 103.72 & 142.68 \\ \end{array}$	$\begin{array}{c ccccc} \mu & \mu & 2 \mu \\ \hline 115.28(2) & 142.26(9) & 332.83(7) \\ \hline 115.89(2) & 333.88(6) \\ \hline 118.76(2) & 141.1(1) & 338.30(7) \\ \hline 165.33 & 117.28 & 351.4 \\ 92.60 & 137.59 & 306.31 \\ \hline 152.14 & 126.74 & 359.55 \\ \hline 106.93 & 141.48 & 324.82 \\ \hline 107.67 & 117.03 & 349.97 \\ 90.02 & 137.52 & 301.83 \\ \hline 103.72 & 142.68 & 335.69 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^aTheoretical calculations of the model compounds were carried out at the B3LYP/6-311+G(d,p) level. ^bThe sum of bond angles around bridgehead atoms except for the angles containing the bridge bond. ^cChemical shift of the bridge carbon nuclei. The values for the model compounds were calculated at the GIAO/B3LYP/ 6-311G(2df,p)//B3LYP/6-311+G(d,p) level. ^dCalculated relative energy in kcal·mol⁻¹ with a zero-point energy. ^eRef 3.

the Ge–Ge bonds of a known digermirane H₂C[Ge(2,6-Et₂C₆H₃)₂]₂ (**4**) [2.379(1) Å]¹⁰ and Me₃Ge–GePh₃ [2.419(1) Å].¹¹ Bridgehead germanium atoms in **2** have an inverted-tetrahedral configuration as shown in Figure 1b. The bridgehead germanium atoms in **2** are much more pyramidalized than the bridgehead silicon atoms in **1**. The sums of three bond angles around Ge atoms ($\Sigma\varphi$), except for the angles containing bridge bond, are 332.83(7)° for Ge1 and 333.88(6)° for Ge2, while that for **1** was 338.30(7)°.³ The Ge1–Ge2–Si2 and Si1–Ge1–

Figure 2. Frontier Kohn–Sham orbitals for LB-**6'** at the B3LYP/6-311++G(d,p)//B3LYP/6-311+G(d,p) level. (a) HOMO. (b) LUMO.

Ge2 angles (α) are 115.28(2) and 115.89(2)°, respectively. The four-membered ring of **2** is folded with an interflap angle β between two Ge₂C ring planes of 142.26(9)°. Four atoms, Si1, Ge1, Ge2, and Si2, in **2** are arranged to be almost planar with the dihedral angle Si1–Ge1–Ge2–Si2 of 2.99(3)°. These structural characteristics of **2** in the solid state are quite similar to those of **1**, suggesting **2** is an LB isomer.

To disclose the structural details of **2**, we carried out DFT calculations for four model compounds, parent 1,3-digermabicyclobutane (**6**), 1,3-disilyl-2,2,4,4-tetramethyl-1,3-digermabicyclobutane (**6**'), and their silicon congeners **5** and **5**'³ at the B3LYP/6-311+G(d,p) level (Chart 2).¹² The results are summarized in Table 1.

Similarly to the parent 1,3-disilabicyclobutane 5, 1,3-digermabicyclobutane 6 was found to show two local minima with the structural characteristics of LB (LB-6) and SB (SB-6) isomers. The energetic preference of LB-6 over SB-6 is much larger than that of LB-5 over SB-5. LB-6 is 33.0 kcal·mol⁻¹ more stable than SB-6, while LB-5 is 20.6 kcal·mol⁻¹ more stable than SB-5.¹³ For 6', only a long bond isomer (LB-6') having structural parameters similar to LB-6 was found at the same level. The structural parameters of 2 are in good accord with those of LB-6'.

The frontier orbitals of LB-6' are characterized by the highlying HOMO [σ (Ge–Ge)] and low-lying LUMO [σ^* (Ge–Ge)] resulting from an overlap between the back lobes on the bridgehead germanium atoms as shown in Figure 2. Both the σ and σ^* orbital levels of LB-6' (-5.65 and -2.57 eV) are slightly lower in energy than those of LB-5' (-5.56 and -2.41 eV) and the σ - σ^* energy gap of LB-6' (3.08 eV) is slightly smaller than that of LB-5' (3.15 eV).

Similarly to 1, 2 shows a clear absorption band at a visible region; $\lambda_{\text{max}}/\text{nm}(\varepsilon)$ in *n*-hexane, 440 nm (9800).¹⁴ The band assignable to the $\sigma(\text{Ge-Ge}) \rightarrow \sigma^*(\text{Ge-Ge})$ transition is slightly red-shifted and more intense than the $\sigma(\text{Si-Si}) \rightarrow \sigma^*(\text{Si-Si})$ transition band in 1 [420 nm (6500)].¹⁷

The ¹³C chemical shift of the ring carbon in **2** (δ_C +135.4) is close to that in LB-**6'** (δ_C +151.7) being consistent with the LB structure of **2** in solution.¹⁸

In summary, 1,3-digermabicyclo[1.1.0]butane **2** is a long bond isomer similarly to the silicon congener **1**. The HOMO–LUMO gap of **2** is slightly smaller than that of **1**.

This work was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan [Encouragement of Young Scientists (B) no. 18750025 (T. I.); Specially Promoted Research no. 17002005 (M. K. and T. I.)].

References and Notes

- T. Tsumuraya, S. A. Batcheller, S. Masamune, Angew. Chem., Int. Ed. Engl. 1991, 30, 902; M. Driess, H. Grützmacher, Angew. Chem., Int. Ed. Engl. 1996, 35, 828; A. Sekiguchi, S. Nagase, in The Chemistry of Organic Silicon Compounds, ed. by Z. Rappoport, Y. Apeloig, John Wiley & Sons, New York, 1998, Vol. 2, Chap. 3.
- G. Parkin, Chem. Rev. 1993, 93, 887; H. Grützmacher, F. Breher, Angew. Chem., Int. Ed. 2002, 41, 4006; F. Breher, Coord. Chem. Rev. 2007, 251, 1007; For theoretical studies on germabicyclobutanes, see: S. Nagase, M. Nakano, J. Chem. Soc., Chem. Commun. 1988, 1077; R. Koch, T. Bruhn, M. Weidenbruch, J. Mol. Struct. (THEOCHEM) 2005, 714, 109.
- 3 T. Iwamoto, D. Yin, C. Kabuto, M. Kira, J. Am. Chem. Soc. 2001, 123, 12730.
- 4 V. Y. Lee, M. Ichinohe, A. Sekiguchi, J. Am. Chem. Soc. 2002, 124, 9962.
- 5 For compounds with an inverted-tetrahedral configuration, see: A. F. Richards, M. Brynda, M. M. Olmstead, P. P. Power, Organometallics 2004, 23, 2841; A. F. Richards, M. Brynda, P. P. Power, Organometallics 2004, 23, 4009.
- 6 D. Bravo-Zhivotovskii, I. Zharov, M. Kapon, Y. Apeloig, J. Chem. Soc., Chem. Commun. 1995, 1625.
- 7 **2**: yellow-orange crystals; mp 203.7–205.5 °C; ¹H NMR (C₆D₆, δ) 0.44 (s, 12H, SiCH₃), 1.30 (s, 18H, *t*-Bu), 1.72–2.46 (m, 28H, adamantylidene); ¹³C NMR (C₆D₆, δ) –0.2 (CH₃), 20.3 (C(CH₃)₃), 28.1 (C(CH₃)₃), 29.5, 39.8, 42.5, 43.5, 44.7, 45.4, 135.4 (ring carbon); ²⁹Si NMR (C₆D₆, δ) 11.1; UV–vis (*n*-hexane) λ_{max} /nm ($\mathcal{E}/10^3$) 325 (4.0) 440 (9.8); MS (EI, 70 eV) *m/z* (%) 646 (76, M⁺), 589 (51), 531 (16), 474 (6), 73 (100); HRMS *m/z* calcd for C₃₂H₅₈Ge₂Si₂, 646.2501; found, 646.2503. For experimental details including synthesis of **3**, see Supporting Information.⁸
- 8 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/index.html.
- 9 Single crystals of $2 \cdot 0.5(C_6H_6)$ suitable for X-ray analysis was obtained by recrystallization from a mixed solvent (hexane: benzene = 1:1). Crystallographic data for $2 \cdot 0.5(C_6H_6)$ have been deposited with Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 680574.
- 10 T. Tsumuraya, S. Sato, W. Ando, Organometallics 1990, 9, 2061.
- 11 L. Párkányi, A. Kalman, S. Sharma, D. M. Nolen, K. H. Pannel, *Inorg. Chem.* **1994**, *33*, 180.
- 12 Details for the DFT calculations, see Supporting Information.⁸
- 13 The greater relative stability of LB isomer to SB isomer of parent bicyclo[1.1.0]tetragermane than parent bicyclotetrasilane has been predicted theoretically by Nagase et al.²
- 14 The absorption maximum of **2** is far red-shifted compared to those of Me₃GeGeMe₃ $[\lambda_{max} 193.7 \text{ nm} (\mathcal{E} 16000)]$,¹⁵ (*t*-BuMe₂-SiMe₂Ge)₂ (229 nm)¹⁶ and digermirane **4** (300 nm ($\mathcal{E} 17400$)).¹⁰
- 15 M. Okano, K. Mochida, Chem. Lett. 1990, 701.
- 16 H. K. Sharma, F. Cervantes-Lee, L. Párkányi, K. H. Pannel, Organometallics 1996, 15, 429.
- 17 TD-DFT calculations for LB-5' and LB-6' at the B3LYP/ 6-311++G(d,p) level confirmed the assignment, while the relative oscillator strengths (f) of the transition bands between 1 and 2 were not reproduced by the calculations. The theoretical absorption bands with the lowest excitation energy are: $\lambda_{\text{max}} =$ 395 nm, f = 0.204 for LB-5' and $\lambda_{\text{max}} = 409$ nm, f = 0.188and LB-6'.
- 18 Remarkable difference of the ¹³CNMR chemical shift between SB and LB isomers provides a good index to distinguish the isomers.³